B B7071

Total Pages: 3

 Reg No.:_____
 Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: EC201

Course Name: NETWORK THEORY (EC, AE)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

- 1 a) State and prove final value theorem and initial value theorems. (7)
 - b) Find the current in each resistor using the superposition theorem. (8)

2 a) For the circuit shown in figure, find the current through 3 Ω using Millmann's (5) theorem

b) Use mesh analysis to find Vx in the circuit shown in figure

3 a) Use Thevenin's theorem to find the current through 5Ω resistor

b) Find the Laplace transform of the square wave shown in figure

Page 1 of 3

(10)

(10)

(5)

B B7071

PART B

Answer any two full questions, each carries 15 marks.

4 a) For the network shown in fig obtain the transfer functions $G_{21}(S)$, $Z_{21}(S)$ and (10) driving point impedance $Z_{11}(S)$.

b) Determine the transform impedance and admittance across capacitor (5)

5 a) For the circuit shown in figure , the switch was closed at time t=0, find the drop (8 across 10Ω

b) Derive the response of a series RLC circuit with step input. (7)

6 a) For the given network function, draw the pole zero diagram and hence obtain the time domain response i(t).

$$I(S) = \frac{5s}{(s+1)(s^2+4s+8)}$$

b) Find the inverse Laplace transform of $F(s) = \frac{(s+1)(s+4s+6)}{(s+1)(s-2)^3}$ (5)

PART C

Answer any two full questions, each carries 20 marks.

7 a) For the circuit shown below find the input impedance and also find the loop (8) currents.

- b) Define the terms Characteristic impedance, Image impedance and propagation (5) constant
- c) Find the expression for resonant frequency for the circuit shown below. (7)

8 a) For the circuit shown below determine the equivalent reactance

b) Prove that AD-BC=1 for a two port bilateral network (7)

(5)

B B7071

c) For the circuit shown in figure find the drop across the two inductor coils. (8)

- 9 a) A capacitor of $30\mu F$ and a resistance of 40Ω are connected in series with a coil (10) having resistance 5 and inductance L. The circuit resonates at 1.5Khz frequency. Find the value of L. Also find the current at resonance, Q factor, half power frequencies and bandwidth.
 - b) For the circuit shown in figure find the expression for frequency at resonance. (10)

